

The Limousin Asteroid Impact of the Triassic Rhaetian Age

Neil R Taylor

Observatoire Solaire

The Limousin Asteroid Impact of the Triassic Rhaetian Age

Neil Taylor

First published 2018 Observatoire Solaire. <u>www.observatoiresolaire.eu</u> © Observatoire Solaire; Neil Taylor ISBN 978-1-9999044-1-8

All rights reserved. Subject to statutory exception, no reproduction, copy or transmission of this publication either in full or in part may be made without the written permission of Observatoire Solaire or the author.

Observatoire Solaire is unable to guarantee or warrant the persistence or continuing accuracy of web pages and associated URLs cited or referenced within this publication, except those directly under the responsibility of Observatoire Solaire.

Front cover image courtesy of NASA

Page 2

Contents

Lis	t of Figures	
Lis	t of tables	
Pre	eface	Page
1.	Introduction	7
2.	France in the Rhaetian age of the Triassic	9
	2.1 Continental France in the Triassic	11
	2.2 Limousin paleoclimate	14
	2.3 Flora and fauna of the late Triassic	16
3.	Species mass extinction	17
	3.1 Mass extinction and asteroid impact correlation	20
	3.2 How asteroid impacts could lead to mass extinctions	22
4.	Asteroids in the Solar System	25
	4.1 Asteroid composition	26
	4.2 Historical asteroid impacts	27
	4.3 Asteroid and meteorite velocities	32
	4.3.1 Orbital speed and impact velocity vectors	33
5.	The Rochechouart impact	35
	5.1 How we know about the impact?	36
	5.2 Where was the 'ground-zero' location of the impact?	43
	5.3 When did the impact occur, and were there two strikes?	43
	5.4 Likely progenitor	44
	5.4.1 Progenitor asteroid type and class	45
	5.4.2 Progenitor size and shape	46
	5.5 Local and global effects of the Limousin impact	49
6.	An asteroid impact investigator's bucket-list in the	
	Rochechouart environs	51
	6.1 Rochechouart town	52

	6.2 D38b road to Babaudus	54
	6.3 Montoume	55
	6.4 Chassenon	56
	6.5 Valette and La Judie	57
7.	Appendices	
	7.1 Geological periods	59
	7.1.1 Epochs and ages of the Triassic and Jurassic	60
	7.2 Mass extinction record	61
	7.3 Asteroid types schematic	62
8.	Recommended reading	64
	8.1 References for further study	64
Pic	cture credits	68
Inc	lex	69

List of figures

Figure 1 Morocco south of Marrakesh	10
Figure 2 The evolution of continental landmasses	13
Figure 3 An example of a transition age surviving ammonite genus.	20
Figure 4 Bouguer gravity anomaly map of Chicxulub crater	29
Figure 5 Impact melt showing characteristic honeycomb pattern	37
Figure 6 Rochechouart lithic breccia	39
Figure 7 Montoume suevite	39
Figure 8 Chassenon suevite	40
Figure 9 Shatter cones from near Rochechouart	40
Figure 10 Apollo asteroid Itokawa imaged by Hayabusa probe	48
Figure 11 Area of conflagration 500km radially from impact point	49
Figure 12 Locations of impact interest in Rochechouart environs	51
Figure 13 Rochechouart church – Lithic breccia	52
Figure 14 Western walls of Rochechouart château.	53
Figure 15 Breccia outcrop beneath Rochechouart château	54
Figure 16 Montoume suevite in natural setting	55
Figure 17 Eglise de Chassenon	56
Figure 18 La Judie	57
Figure 19 Valette and impact sculptor	58
Figure 20 The epochs and ages of the Triassic and Jurassic periods	60
Figure 21 Biological genera losses over geological time frame	61
Figure 22 Asteroid types	63

List of tables

Table 2 Correlation of mass extinctions to large impact events22
Table 3 Estimates for progenitor based on range of key parameters47
Table 4 The Eras and periods of geological time